Current transient and in situ AFM studies of initial growth stages of electrochemically deposited nickel cobalt hydroxide nanosheet films.

نویسندگان

  • Tuyen Nguyen
  • M João Carmezim
  • M Fátima Montemor
چکیده

Current transient evolution and in situ electrochemical AFM were used to study the initial stages of growth of electrochemically deposited nickel cobalt hydroxide films for energy storage applications. Current transients were taken at constant potentials, from -700 mV to -1000 mV, with a step of 50 mV. The current transients were fitted with three different nucleation models: Scharifker-Hill, Scharifker-Mostany and Mirkin-Nilov-Heerman-Tarallo and the results revealed that film growth was governed by a 3D instantaneous nucleation mechanism. In situ electrochemical AFM studies confirmed the instantaneous nucleation mechanism and revealed the early stage formation of nanosheets. The in situ AFM results were supported by the ex situ FEG-SEM results, showing the formation of nanoneedles at the first stages of nucleation and the growth into nanosheets with the increasing deposition time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Structural Studies of Nickel ‎Doped Cobalt Ferrite Thin Films

   The growth and structural study of Nickel doped Cobalt ferrite thin films on glass substrate using spray pyrolysis technique have been done. The structural studies confirmed the growth of polycrystalline film having cubic structure with Fd3m space group. The x ray density was found to increase with Ni concentration, where as the reduction, in crystalline size, was found in XRD m...

متن کامل

An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors

Porous nickel oxide films were prepared by electrochemically precipitating nickel hydroxide and heating the hydroxide in air at 300°C. The resulting nickel oxide films behave as an electrochemical capacitor with a specific capacitance of 59 Flg electrode material. These nickel oxide films maintain high utilization at high rates of discharge (i.e., high power density) and have excellent cycle li...

متن کامل

Capacitance studies of cobalt oxide films formed via electrochemical precipitation

Cobalt oxide films were prepared by electrochemically precipitating the hydroxide and heating it in air to form Co3O4. The resulting oxide films behave as a capacitor. The materials were studied emphasizing their use as either positive or negative electrodes in devices. The capacitance of the material was estimated at different heating temperatures and insight was gained into the charge storage...

متن کامل

Evaluation of the Effect of Ni-Co NPs for the Effective Growth of Carbon Nanotubes by TCVD System

A systematic study was conducted to understand the influences of catalyst combination as Ni-Co NPs on carbon nanotubes (CNTs) grown by Chemical Vapor Deposition (TCVD). The DC-sputtering system was used to prepare Co and Ni-Co thin films on silicon substrate. Ni- Co nanoparticles were used as metal catalyst for growing carbon nanotubes from acetylene (C2H2) gas in 850 ̊ C during 15 min. Carb...

متن کامل

Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4

Films of brucite-type cobalt hydroxide with nanorod morphology and hydrotalcite-type cobalt hydroxide with nanosheet morphology films were fabricated by heterogeneous nucleation in a chemical bath using water and a mixed solution of water–methanol as solvents, respectively. Since oxygen is around 25 times more soluble in methanol than in water, a methanol solution was used to convert a part of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 17  شماره 

صفحات  -

تاریخ انتشار 2016